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Abstract: Classical numerical methods for solving solid–liquid phase change assume a constant
density upon melting or solidification and are not efficient when applied to phase change with volume
expansion or shrinkage. However, solid–liquid phase change is accompanied by a volume change and
an appropriate numerical method must take this into account. Therefore, an efficient algorithm for
solid–liquid phase change with a density change is presented. Its performance for a one-dimensional
solidification problem and for the quasi two-dimensional melting of octadecane in a cubic cavity
was tested. The new algorithm requires less than 1/9 of the iterations compared to the source based
method in one dimension and less than 1/7 in two dimensions. Moreover, the new method is
validated against PIV measurements from the literature. A conjugate heat transfer simulation, which
includes parts of the experimental setup, shows that parasitic heat fluxes can significantly alter the
shape of the phase front near the bottom wall.

Keywords: phase change material (PCM); optimum approach; melting; volume change; OpenFOAM;
conjugate heat transfer

1. Introduction

Melting and solidification processes receive scientific interest as they are fundamental to many
phenomena in nature and technical applications. Generally, solid–liquid phase change extends
over multiple length and time scales, but for most engineering purposes a macroscopic continuum
approach is adequate. Examples are latent energy thermal heat storage [1,2] and metal processing [3].
Multiple approaches exist to solve solid–liquid phase change in the framework of continuum theory
numerically. Mostly, these approaches are classified by the way they treat the moving phase boundary
into deforming and fixed grid schemes [4,5]. It has turned out that fixed grid schemes offer more
flexibility and are easier to implement than deforming grid schemes. Nevertheless, numerical
methods for melting and solidification on fixed grids are still challenging [6]. The energy equation
is highly nonlinear and most problems are intertwined with fluid flow and some even with solid
movement [7]. Furthermore, an additional variable, called phase fraction, is required in fixed grid
schemes. At the time when the first fixed grid numerical methods emerged, only diffusive phase
change was considered [8,9]. Later, multiple approaches were developed to describe convective phase
change on fixed grids [10–12]. Great effort was put into the development of efficient algorithms,
especially by Voller and his coauthors [13,14]. This resulted in a numerical scheme, based on Newton
linearization, with a minimized number of iterations. The numerical scheme was named the optimum
approach and the idea of linearizing phase change problems has triggered further research [15].
However, back then computers were not nearly as powerful as today. To keep the computational effort
under control, the volume change upon melting or solidification was disregarded and the variable
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density in the liquid was described by the Boussinesq approximation. This is still the standard today,
despite a drastic increase in computational power and the fact that solid–liquid phase change is always
accompanied by a volume change. Moreover, the validity range of the Boussinseq approximation is
unknown for solid–liquid phase change.

Nowadays, researchers start to include density change in their simulations [16–18], e.g., Hassab et al. [19]
studied the effect of volume expansion for different heating boundary conditions and Dallaire and
Gosselin [20] the solidification of water in an elastic capsule. However, they all lack a customized
algorithm for solid–liquid phase change accompanied by density change and have to use slowly
converging methods. To tackle this problem, we developed a new algorithm for melting and
freezing of phase change material (PCM) with density change, which minimizes the number of
iterations required and is based on the optimum approach.

This paper describes the new algorithm and compares its performance to the source based method.
The source based method converges slowly but is quite stable and often used. It is implemented in
most commercial codes and is used as a benchmark. Thereby, the original source based method was
adjusted to be able to solve for a density change upon melting and solidification. Test cases were a
one-dimensional solidification problem, where an analytical solution exists, and a two-dimensional
melting problem with natural convection. Furthermore, we compared the numerical solution of the
two-dimensional melting problem to experimental velocity fields obtained by Faden et al. [21].

2. Mathematical Model

Liquid and Solid phase are treated on the same grid and are tracked by the phase fraction α.
With the aid of the phase fraction, the velocity inside the solid phase is set to zero using a Darcy
source term:

~A(α) = D
(1− α)2

α3 + ε
~u, (1)

where D is the Darcy constant and ε a small numerical constant to avoid dividing by zero. The flow in
the liquid phase is assumed to be laminar and Newtonian. For a Newtonian fluid, the viscous stress
tensor reads:

τ = η

(
(∇~u +∇(~u)T)− 2

3
(∇ · ~u)E

)
, (2)

where η is the dynamic viscosity.
Furthermore, the PCM is assumed to be incompressible, hence density is solely depending on

the temperature, i.e., ρ = ρ(T). Pressure and viscous terms in the energy equation are not taken into
account. Considering these assumptions the resulting mass, momentum and energy equations are:

∂ρ

∂t
+∇ · (ρ~u) = 0, (3)

∂ρ~u
∂t

+∇ · (ρ~u~u) = −∇p +∇ · τ + ρ~g + ~A, (4)

∂ρh
∂t

+∇ · (ρ~uh) = ∇ · (λ∇T), (5)

where the mixture heat conductivity is defined as a linear blend between its solid and liquid value:

λ = αλl + (1− α)λs. (6)
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This system of equations requires an equation of state to be closed. Mostly, this relation between
the enthalpy and the temperature is not given directly but split up in a sensible and a latent part.
To be able to use material properties from the literature, we follow this approach and define a piecewise
enthalpy–temperature relation. Moreover, instead of a melting temperature, we define a melting range:

h =


cp,sT T < TS

cp(T − TS) + hS + α
ρl
ρ

L TS ≤ T ≤ TL

cp,l(T − TL) + hL T > TL,

(7)

where TS is the solidus, TL the liquidus temperature and L the latent heat of fusion. The solidus and
the liquidus enthalpy are defined as:

hS = cp,sTS

hL = cp(TL − TS) + hS + L.
(8)

Additionally, the melting range is thin, so we can assume a constant heat capacity in the
mushy region:

cp =
cp,l + cp,s

2
. (9)

This simplifies the inversion of the enthalpy–temperature relation considerably, which is necessary
for the numerical solution later on:

T =



h
cp,s

h < hS

TS +
h− hS

hL − hS
(TL − TS) hS ≤ h ≤ hL

TL +
h− hL

cp,l
h > hL.

(10)

The relation between the enthalpy and the phase fraction follows from the mixture approach [22]:

ρh = αρlhL + (1− α)ρshS (11)

with

ρ = αρl + (1− α)ρs. (12)

Combining these two equations, the phase fraction can be expressed as a function of the enthalpy:

α =
ρs(hS − h)

h(ρl − ρs)− ρlhL + ρshS
. (13)

Alternatively, α can be expressed as a function of the temperature:

α =
ρ

ρl

T − TS
TL − TS

=

T−TS
TL−TS

ρs
ρl

1 + T−TS
TL−TS

( ρs
ρl
− 1)

. (14)

Apparently, the phase fraction is a non-linear function of the temperature. However, with this
definition of the phase fraction, the enthalpy (Equation (7)) is still a linear function of the temperature
in each interval.

It should be noted that the methods described in the next section work for arbitrary density and
enthalpy temperature relations and not only for the specific cases presented here.
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3. Numerical Solution

The mathematical model was implemented into the finite volume, CFD toolbox OpenFOAM
(version 2.2.2) [23], whereby the solver was based on the standard OpenFOAM solver
buoyantPimpleFoam. The system of partial differential equations was solved in a sequential manner,
whereas strong couplings were treated through inner iterations and weak couplings through outer
iterations (Figure 1). The focus here was on the T-h coupling, hence, it was assumed that the mass flux
is known. A detailed description on the pressure velocity coupling is given in the Appendix A.

New time step

Momentum predictor (Equation (A11)

Solve the linearized energy
equation Equation (25) /(26)

Update the enthalpy/phase fraction

Convergence?

Solve the pressure velocity
coupling (Equation (A12)–(A17)

Two
iterations?

Next time step

Linear iterations

Nonlinear T-h iterations

Outer iterations

yes
no

no

yes

Figure 1. Flow chart of the numerical solution process inside a time step. In the following, iterations
needed to solve the linearized energy equation are called linear iterations and iterations for the
nonlinear energy equation are called nonlinear T-h iterations.

3.1. Optimum Approach

The original optimum approach was developed for phase change with sensible enthalpy transport
and constant thermophysical properties. Its main idea is to update the enthalpy directly on the T-h
curve. The starting point is the semi-discretized form of the energy equation:

ρ
hk+1 − ho

∆t
+ cpρ∇ · (~umTk+1,∗) = λk∆Tk+1,∗, (15)

where the index o refers to the old time step, m to the known mass flux, k to the old iteration step
inside the T-h iteration and k + 1 to the new iteration step. The star ∗ indicates an intermediate value.
The new iteration step of the enthalpy hk+1 is approximated via a Taylor expansion:

hk+1 = hk +
∂h
∂T

∣∣∣∣
k
(Tk+1,∗ − Tk) (16)

and inserted into the semi-discretized energy equation:

ρkhk − ρoho

∆t
+ ρk ∂h

∂T

∣∣∣∣
k

Tk+1,∗ − Tk

∆t
+∇ · (ρm~umhk) = ∇ · (λk∆Tk+1,∗). (17)
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Equation (17) is linear in Tk+1,∗ and can be solved by a linear matrix solver. It is important to
note that the second term on the left hand side is zero when the solution converges, since in this case
Tk = Tk+1,∗. The new iteration step of the enthalpy is calculated by inserting Tk+1,∗ into Equation (16).
However, it is possible that cells skip the sharp enthalpy change with this procedure. To overcome this
problem, the temperature is forced back onto the T-h curve by Equation (10) once the new enthalpy
value is calculated:

Tk+1 = f (hk+1). (18)

3.2. Optimum Density Approach

If the density is constant, the optimum approach leads to a minimized number of iterations.
However, for most PCM, the density is discontinuous at the solid–liquid phase change. Moreover, for
the outflow boundary to work, the total enthalpy has to be convected. The optimum density approach
addresses these two issues. Here, the starting point is the semi-discretized energy equation with
variable physical properties and total enthalpy transport:

ρkhk+1 − ρoho

∆t
+∇ · (ρm~umhk) = ∇ · (λk∇Tk+1,∗). (19)

A Taylor expansion of the product consisting of density and enthalpy accounts for the
discontinuous density:

(ρh)k+1 = (ρh)k + ρk ∂h
∂T

∣∣∣∣
k
(Tk+1,∗ − Tk) + hk ∂ρ

∂T

∣∣∣∣
k
(Tk+1,∗ − Tk) +

∂h
∂T

∣∣∣∣
k

∂ρ

∂T

∣∣∣∣
k
(Tk+1,∗ − Tk)2

≈ (ρh)k +

(
ρk ∂h

∂T

∣∣∣∣
k
+ hk ∂ρ

∂T

∣∣∣∣
k

)
(Tk+1,∗ − Tk).

(20)

The term involving both derivatives approaches zero quadratically and is therefore not taken into
account. With the enthalpy in the phase change region defined as

h = cp(T − TS) + hS + α
ρl
ρ

L, (21)

the derivative of h with respect to T is

∂h
∂T

= cp +
L

TL − TS
, (22)

while the derivative of the density with respect to the temperature follows from Equations (11) and (14):

∂ρ

∂T
=

ρs
ρl

(1 + T−TS
TL−TS

( ρs
ρl
− 1))2

ρl − ρs

TL − TS
. (23)

Second, we Taylor expand the convection term:

∇ · (ρm~umhk+1) = ∇ · (ρm~umhk) +∇ ·
(

ρm~um ∂h
∂T

∣∣∣∣
k
Tk+1,∗

)
−∇ ·

(
ρm~um ∂h

∂T

∣∣∣∣
k
Tk
)

. (24)

Here, only the enthalpy is expanded to be consistent with the PISO algorithm, which gives the
conservative mass fluxes, i.e., the product of the density and the velocity at the cell faces ρm~um, at the
iteration level m. Inserting Equations (20) and (24) into the semi-discretized energy Equation (19) yields:
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ρkhk − ρoho

∆t
+

(
ρk ∂h

∂T

∣∣∣∣
k
+ hk ∂ρ

∂T

∣∣∣∣
k

)
Tk+1,∗ − Tk

∆t
+∇ · (ρm~umhk)+

∇ ·
(

ρm~um ∂h
∂T

∣∣∣∣
k
Tk+1,∗

)
−∇ ·

(
ρm~um ∂h

∂T

∣∣∣∣
k
Tk
)
= ∇ · (λk∇Tk+1,∗).

(25)

The second term and the summation of the fifth and sixth terms are zero at convergence.
After Equation (25) is solved by a linear matrix solver, the temperature is forced back onto the
T-h curve, the new phase fraction value is calculated by Equation (13) and the material properties are
updated. The iteration process is ended if the residuum of α is reached, i.e., max(|αk+1 − αk|) < 10−6.

3.3. Source Based Method

The source based method is based on the idea of splitting the enthalpy into a sensible and a latent
part and treating the latent part as a known source term. This yields:

cp
∂ρkTk+1

∂t
+ cp∇ · (ρk~umTk+1)−∇ · (λ∇Tk+1) = −L

(
∂ρk

l αk

∂t
+∇ · (ρk

l~u
mαk)

)
︸ ︷︷ ︸

source term

. (26)

This equation is linear in Tk+1 and can be solved readily. Next, the phase fraction α is updated
under the assumption that the enthalpy inside a cell is the same before and after the update step

αk+1,∗ = αk + ω
cp

L
(Tk+1 − T∗), (27)

where ω is an under relaxation factor and T∗ = (TL − TS)
ρl
ρk αk + TS. To assure boundedness of the

phase fraction, the calculated αk+1,∗ has to be corrected:

αk+1 = min[max[αk+1,∗, 0], 1]. (28)

In a final step, the material properties are updated, the residuum is calculated and a new iteration
step is started if the residuum is not fulfilled.

3.4. Test Cases

3.4.1. One-Dimensional Solidification

The first test case was a one-dimensional solidification Stefan problem with a time dependent
convective boundary condition and a density change. The particular nature of this problem is its
analytical solution found by Tarzia [24]. For this test case, we did without explicit units, but assumed
that they are consistent.

The one-dimensional simulation domain is depicted in Figure 2. The infinite analytical domain
was cut off at a length of l = 10, where a fixed pressure outlet boundary condition is applied. Initially,
the PCM was liquid with a temperature of Tini = 1. The material properties did not differ between the
two phases, except for the density: λ = cp = ρl = 1, ρs = [0.9, 0.8, 0.7]. Both the Darcy constant and
the viscosity were set to zero: D = η = 0. The freezing temperature Tf of the material was 0, which
was approximated by solidus and liquidus temperatures of TS = −0.01 and TL = 0.01, respectively.
At t > 0, a convective cooling condition with a time-dependent heat transfer coefficient was applied at
the left boundary:

∂T
∂x

=
γ

λ
√

t
(T − T∞), (29)
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with

γ = 5
λ√
π λ

ρcp

Tini − Tf

Tf − T∞
. (30)

Subsequently, the material started to solidify and the increase in volume pushed the liquid
through the outlet at the right. The domain was divided into 800 cells (∆x = 0.0125) and the time step
was 0.001. The simulation ended at a time of 8.

∂T
∂x = 0, p = 0, ∂u

∂x = 0∂T
∂x = γ

λ
√

t
(T − T∞), ∂p

∂x = 0,u = 0 PCM
Tini

x

l

Figure 2. One-dimensional solidification with density change.

The analytical solution of this problem is rather long and is not repeated here. It can be found in
Tarzia [24].

3.4.2. Two-Dimensional Melting with Convection

The geometry of the second test case was a cubic cavity with an edge length of l = 40 mm and a
velocity outlet at the top left corner (Figure 3). The outlet velocity was obtained by the incompressibility
assumption, i.e., ρ = ρ(T). After each solution of the nonlinear T-h-coupling, the mass inside the
capsule was calculated via a sum over all cells m = ∑ ρmV and subtracted from the mass at the
beginning of the time step. This mass difference had to leave the capsule in this time step, as the
density was not affected by the pressure:

mo
capsule −mm

capsule

∆t
= (umρm A)outlet. (31)

Rearranged, this yielded a formula for the outlet velocity:

um
outlet =

mo
capsule −mm

capsule

∆t(ρm A)outlet
. (32)

The correct outlet velocity was calculated iteratively with the outer iteration loop. The pressure at
the outlet was allowed to find its own value:

∂p
∂n

= 0. (33)

This outflow boundary was necessary, because a zero gradient velocity boundary condition
assumes a fully developed flow. This assumption does not hold if the outflow boundary is simply
prescribed at the edge of the cavity. In that case, a recirculation area develops. Another solution would
be a geometry extension at the outlet, e.g., a short pipe.

At the beginning, the PCM inside the cavity was completely solid at a temperature of
Tini = 298.15 K. With the start of the simulation, the temperature of the left cavity wall was raised to
Th = 308.15 K. The temperature of the right cavity wall was kept at the initial temperature Tc = Tini.
At the two remaining cavity walls and at the outlet boundary, the normal gradient of the temperature
was set to zero:

∂T
∂n

= 0. (34)
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TcTh

solid
PCM

liquid
PCM

x

y

~g l

uoutlet

Figure 3. State of the simulation domain at t > 0 s. The left side is heated to Th, while the right side
is kept at Tc, which is the same as the initial temperature Tini. The PCM is partially molten and the
influence of convection is visible.

The time was discretized by the implicit Euler method and the time step was chosen by a
maximum CFL-number or a maximum time step, depending on which criterion was reached first.
For each algorithm, four different maximum CFL/time step combinations were investigated: maximum
CFL of 0.5, 1.0, 2.0 and 4.0 with a maximum time step of 0.5 s, 1.0 s, 2.0 s and 4.0 s, respectively.
The thermophysical properties of the chosen PCM (octadecane) are summarized in Table 1; solid
density and viscosity were measured in-house.

Table 1. Thermophysical properties of octadecane.

Property Unit Value

Melting temperature K 301.15 [25]
Melting Range (TL-TS) K 0.05
Latent heat of fusion kJ/kg 243.68 [26]
Density (solid) kg/m3 867.00
Density (liquid) kg/m3 775.60 [26]
Volumetric thermal expansion coefficient 1/K 8.36 × 10−4 [26]
Specific heat capacity (solid) kJ/(kg K) 1.90 [26]
Specific heat capacity (liquid) kJ/(kg K) 2.24 [26]
Thermal conductivity (solid) W/(m K) 0.32 [26]
Thermal conductivity (liquid) W/(m K) 0.15 [26]
Dynamic viscosity (T = 309.15 K) mPas 3.75
Darcy constant kg/(m3s) 1010

The spatial discretization of the convection term has to be chosen carefully, due to the steep
gradient of most variables at the phase boundary. Generally, first-order schemes are far too diffusive,
while second-order schemes cannot predict the phase boundary accurately enough. To overcome
this problem, the convection term was discretized by a high resolution scheme. For the two Taylor
expanded convection terms appearing in Equation (24), a simple upwind discretization sufficed,
as they canceled each other out at convergence. The spatial discretization resulted in both symmetric
and asymmetric matrix systems. The former were solved by a preconditioned conjugate gradient solver
with a diagonal incomplete Cholesky preconditioner method, whereas the latter by a preconditioned
biconjugate gradient solver with a diagonal incomplete lower upper preconditioner. The residual for
the phase fraction was set to 10−6 in 1D and 10−7 in 2D.
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3.5. Validation Case

For the validation of the numerical model, we used PIV and phase front measurements by
Faden et al. [21]. Their experimental setup consists of a quadratic, transparent polycarbonate pipe,
with a length of 40 mm and a wall thickness of lpoly = 1 mm, which is clamped between a copper and
an aluminum plate. The PCM is inside the pipe and initially at Tini = 298.15 K. With the start of the
experiment, the temperature of the copper plate is raised to Th = 308.15 K, whereas the aluminum
plate is kept at the initial temperature. During the experiment, the setup is insulated by foamed
polystyrene, whereby the insulation on top of the pipe stands out a bit. Excess material can leave the
capsule through a passage way in the copper plate.

We mimicked the experimental setup and extended the simulation domain to include the top
and bottom capsule walls and the insulation (Figure 4), but reduced the problem to two dimensions.
The surrounding air and the cork plate on which the experimental setup was mounted were modeled
as a thermal resistance. The extension of the simulation domain was necessary because the thermal
conductivity of the polycarbonate capsule walls was higher than that of liquid octadecane. This led to
a parasitic heat flux, which altered the shape of the phase front, especially at the bottom of the capsule,
where the convective motion of the liquid PCM hampered melting. Moreover, the insulation was
clamped between the copper and the aluminum plate, which led to an additional parasitic heat flux.

copper plate aluminum plate

lstyr

polystyrene

∂T
∂n = −k1(T − T∞)

∂T
∂n = −k2(T − T∞)

polystyrene

lpoly

TcTh

solid
PCM

liquid
PCM

polycarbonatex

y

~g l

uoutlet

Figure 4. State of the extended simulation domain at t > 0 s. The copper and the aluminum plate are
not simulated, instead a constant temperature is prescribed.

The solid capsule walls were treated computationally, similar to the solid PCM. A Darcy source
term suppressed the velocity, and the thermal properties were implemented via two additional
variables ζ an θ. The heat transfer coefficient between the experimental setup and the surrounding
air was calculated by using the VDI Heat Atlas [27]. This yielded a heat transfer coefficient of
k1 ≈ 7 W/m2K at the top and k2 ≈ 3 W/m2K at the bottom. The ambient temperature was set to
T∞ = 295.15 K. The time step was determined by a maximal Co-number of 1.0 with a maximum
time step of 1.0 s. The solver settings and the other boundary conditions were the same as in the
previous section. The thermophysical properties of polycarbonate and the polystyrene insulation are
summarized in Table 2.
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Table 2. Thermophysical properties of polycarbonate (PC) and foamed polystyrene (PS).

Property Unit Value
Density PC kg/m3 1200.0
Density PS kg/m3 40.0
Specific heat capacity PC kJ/(kg K) 1170.0
Specific heat capacity PS kJ/(kg K) 1500.0
Thermal conductivity PC W/(m K) 0.21
Thermal conductivity PS W/(m K) 0.04

3.6. Mesh Influence for the Convection Test Case

Three meshes with 10,000, 40,000 and 90,000 cells were created and compared. The relative
differences in the global liquid fraction with respect to the fine mesh were highest at the beginning of
the simulation with 60% for the coarse and 20% for the medium mesh. This huge difference can be
explained easily: With an increasing number of cells, the cell size decreased and therefore the point in
time where the first cell was liquid was earlier. Throughout the rest of the simulation, the maximum
relative difference between the coarse and the fine mesh was approximately 6% and 1% for the medium
mesh (Figure 5). A relative difference of 1% was acceptable, thus we chose the medium mesh for all
further computations, including the validation case. Here, the total number of cells was higher (58,000),
because of the extended simulation domain, which included the insulation and the polycarbonate
pipe walls.

Figure 5. Relative difference in the global liquid fraction between the coarse/medium and the fine
mesh over time.

4. Results and Discussion

4.1. One-Dimensional Solidification

For the one-dimensional solidification test case, both approaches yielded almost the exact same
results, i.e., they did not differ up to the sixth decimal place in the global liquid fraction at the
end of the simulation. For that reason, the figures displaying the liquid fraction or the temperature
only show one solution method. The temperature distribution obtained by the numerical solution
closely matches the analytical solution and it is hard to distinguish the two lines by eye (Figure 6).
Hence, both methods give correct results and can be employed for solving solid–liquid phase change
accompanied by a density change. However, both methods differed by the required number of
nonlinear iterations (Figure 7). The source base method needed approximately nine times as many
iterations compared to the optimum density approach, slightly depending on the density ratio.
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For both approaches, the number of nonlinear iterations increased with decreasing density ratio,
but the increase was moderate.

Figure 6. Temperature profile of the one dimensional test case after four time units. The kink
corresponds to the position of the phase boundary.

Figure 7. Number of nonlinear iterations for different density ratios.

The density ratio not only has a computational influence but also a physical one. The liquid
fraction at the end of the simulation rose with the density ratio, since the volume expansion upon
solidification pushed the liquid through the outlet and therefore reduced the amount of liquid inside
the simulation domain. However, the volume change also resulted in a higher thermal resistance.
Therefore, the functional relation between the density ratio and the liquid fraction was somewhat less
than linear (Figure 8).
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Figure 8. Global liquid fraction at the end of the simulation for different density ratios.

A phenomenon inherent to all enthalpy methods during diffusive dominated phase change is a
stepwise progression of the phase boundary. This results in an oscillating velocity for density varying
phase change (Figure 9). These oscillations have been observed before, but it seems that they were
stronger here than those found by Alexiades and Drake [22]. This can be explained by the effect
that segregated pressure velocity algorithms generally tend to produce oscillations at discontinuous
surfaces. However, the influence of these oscillations on the temperature and phase fraction is small,
as in the finite volume method they are convected by the mass flux on the cell faces and these mass
fluxes do not oscillate. If two- or three-dimensional problems are studied and natural convection
is taken into account, the progression of the phase front is no longer stepwise and the velocity
oscillations vanish.

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

t

u

Figure 9. Velocity at x = 2.5. At the beginning, u is greater than 0.1. The maximum velocity is 0.51.

4.2. Two-Dimensional Melting of Octadecane with Natural Convection

As previously, the optimum density approach required less computational effort than the source
based method, but the source based method did not perform as poorly as in the one-dimensional
case. This was also found by Voller and Swaminathan for a comparison without density change in the
original optimum approach paper [14]. Depending on the Courant number, the source based method
required 4–7 times as many iterations compared to the optimum density approach (Figure 10).
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It was obvious that the maximum Courant number and thus the time step greatly influenced the
iterations required. A small time step meant more time steps and therefore the T-h coupling had to be
solved more often, but fewer iterations per time step were necessary. However, two difficulties arise, if
the time step is increased: First, the solution methods for the T-h coupling can become unstable. This
happened here for a Courant number greater than 2 for the source based method. This may be resolved
by applying underrelaxation. Second, the number of outer iterations per time step has to be increased,
because the coupling between the momentum and the energy equations is not solved accurately
enough. This happened here for the optimum density approach at max Co > 4. Here, the solution
would be an increased number of outer iterations. However, in both cases, the computational effort
was increased despite a higher time step. That is why we did not increase the time step any further.

The difference in the iteration number affected the required computational time strongly. For a
maximum Courant number of 2, the source based method needed four times as long as the optimum
density approach with the same maximum Courant number. When the stability of the solver was
also taken into account, the source based method with a Courant number of 2 needed approximately
5.5 times as long as the optimum density approach with a Courant number of 4. This comparison
seemed reasonable, since the influence of the time step on the liquid fraction after 4 h was small, e.g.,
for the optimum density approach, the difference in the global liquid fraction between the largest and
the smallest time step/maximum Co-number combination was below 0.02 %.
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Figure 10. Number of nonlinear T-h iterations for the two different approaches and four different time
steps [0.5,1.0,2.0,4.0]. The missing bar indicates a solver crash.

Figure 11 depicts the nonlinear and linear iterations over time. The diffusive dominated melting
regime right at the beginning is recognizable by a lower slope.
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Figure 11. (Left) nonlinear T-h iterations over time; and (Right) linear iterations over time
(max Co = 1.0/dt = 1.0 s).
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At the end of the simulation, the source based method required over five times as many nonlinear
T-h iterations compared to the optimum density approach and six times as many calls to the linear
matrix solver. The convergence history inside a time step emphasizes this behavior (Figure 12). Clearly,
the residual of the optimum density approach decreased more quickly.
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R
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Source

Figure 12. Convergence history for the two different approaches. The graph shown here refers to
t = 20 min (max Co = 1.0/dt = 1.0 s).

The position of the phase front is shown in Figure 13 (left) for the optimum density approach.
Showing only the solution obtained by the optimum density approach suffices, because the liquid
fraction and the position of the phase front did not differ much compared to the source based method.
The optimum density approach gave a global liquid fraction at the end of the simulation of α = 0.643,
and α = 0.641 with the source based approach. The reason for this small difference was the different
discretization of the convection term. This is an issue the authors plan to investigate further in a
following paper.
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Figure 13. (Left) Numerical phase fronts with adiabatic top and bottom boundary; and (Right)
experimental phase and numerical phase fronts with the extended simulation domain. In both figures,
the lines refer to 1, 2, 3 and 4 h (left to right).
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4.3. Validation

All simulations presented in this section were performed with the optimum density solver on the
extended simulation domain. The measured [21] and the numerically obtained phase front positions
agree well (Figure 13).

After 60 min, the influence of natural convection was clearly visible as the phase front was
tilted to the right and melting at the top of the capsule was clearly faster than at the bottom. With
increasing time, the influence of convection became even more dominant. After 4 h, only a small
streak of solid PCM separated the right capsule wall and the liquid PCM at the top of the capsule,
while at the bottom of the capsule the liquid PCM progressed to about a quarter of the capsule
length for the experimental results and a bit less than a quarter for the numerical ones. The kink
in the phase front shape at the bottom of the capsule, resulting from the parasitic heat flux through
the capsule walls, was also present in the numerical solution on the extended simulation domain.
The greatest deviations arose at the top of the capsule, where the numerical solution predicted a larger
already melted area. Possible reasons for this deviation are: increased natural convection due to the
two-dimensionality assumption, uncertainties in thermo-physical properties, heat loss while the top
insulation was removed for taking pictures required for PIV and the presence of an air bubble in the
experiment, which hampered melting at the top of the capsule. This air bubble was visible in the
experimental velocity field in the top left corner, as an area with zero velocity (Figure 14). Similar to the
phase front positions, the velocity fields matched well. Of course, the measured velocity field was not
as smooth as the numerically obtained one. Basically, the flow was a large vortex driven by buoyancy
forces, whereas the highest velocities were at the left cavity wall and at the phase boundary. The fluid
inside this vortex was at rest. In both cases, the boundary layer thickness towards the solid boundaries
was considerably thinner than towards the fluid at rest.

Figure 14. Experimentally (left); and numerically (right) obtained velocity field inside the PCM
after 4 h.

The temperature distribution of the extended simulation domain (Figure 15), including the PCM,
the walls and the insulation, confirmed the above-mentioned parasitic heat fluxes. At the bottom of
the capsule, the wall and the complete insulation were clamped between the hot copper and the cold
aluminum plate. For this reason, the temperature inside the insulation and the wall was higher than
that of the PCM at the same horizontal position and a parasitic heat flux flowed in the PCM. Thereby,
the influence of the wall was higher, as the thermal conductivity was higher. Nevertheless, the kink
in the phase boundary could not be explained by including only the wall and applying an adiabatic
boundary condition. Although the insulation at the top stood out slightly, its general influence on the
wall and the insulation was the same.
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Transparent materials with a distinctly lower thermal conductivity than polycarbonate are hard to
find. Thus, the only way of decreasing the parasitic heat flux through the wall is to make them thinner.
The influence of the insulation, however, could be removed if the experiments were conducted in an
environment with controlled temperature. This would also simplify the necessary boundary condition
for a validation simulation.

Figure 15. Temperature profile in the PCM, the pipe walls and the insulation after: 1 h (left); and 3 h
(right). The black lines were inserted to guide to eye and mark the pipe walls. The melting temperature
is white.

5. Conclusions

Taylor expanding the density and the enthalpy around the melting temperature can significantly
reduce the computational effort needed to solve the non-linear energy equation in solid–liquid phase
change with volume expansion or shrinkage. The algorithm obtained by following this approach needs
a minimized number of iterations and gives the same results as the slowly converging source based
method. Moreover, the number of iterations increases only slightly with an increasing density ratio.

The new algorithm was validated against experiments and our numerical results show that
parasitic heat fluxes can alter the shape of the phase front near the bottom wall significantly.
It is therefore necessary to include certain parts of the experimental setup, e.g. the capsule walls
in the simulation domain.

We anticipate that volume expansion upon melting or solidification will be included in more and
more simulations regarding latent thermal heat storage, since density changes of 10% or more, which
are typical for PCM, cannot simply be ignored in many applications, e.g. macro-capsules in which the
volume expansion leads to stress in the capsule walls. Even more importantly the energy conservation
is violated.

Interestingly, the influence of this violation and of the validity of the Boussinesq approximation
for melting process is not known, although it is widespread. This is an issue we will address with this
new algorithm in a forthcoming paper.
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Nomenclature

cp heat capacity
f function
h enthalpy
~g, g gravitational acceleration
k heat transfer coefficient
l length
m mass
~n normalized gradient
p pressure
t time
~u velocity vector
x coordinate
y coordinate
~A Darcy term
A area
D Darcy constant
E identity matrix
L latent heat of fusion
T temperature
V volume
α phase fraction
β volumetric coefficient of thermal expansion
γ abbreviation
ε small numerical constant
λ thermal conductivity
η viscosity
ρ density
τ stress tensor
ω underrelaxation factor
c cold
g global
h hot
i index
ini initial
k index
l liquid
m index
o old
re f reference
res residuum
s solid
y y component
L liquidus
S solidus
T transpose
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Appendix A

Appendix A.1. Derivation of the Pressure Equation

A pressure equation is necessary for the sequential solution of the velocity–pressure coupling.
Such an equation can be derived by combining the momentum and the continuity equation. We start
by linearizing the momentum equation with the mass flux from the last time step ~φ and discretize the
velocity and source terms, but delay the discretization of the pressure and the buoyancy term in the
spirit of Rhie and Chow [28]. Furthermore, we write the equation in solution vector notation:

C~u−~r = −∇ p̃−~g ·~x∇ρ. (A1)

The coefficients of the matrix C contain the spatial and the time discretization of the momentum
equation. This matrix is split up into a matrix A, containing the diagonal elements of C and a matrix
H′ with the non-diagonal elements:

A~u + H′~u−~r = −∇ p̃−~g ·~x∇ρ. (A2)

Conveniently, H′~u−~r is written as −~H(~u):

A~u = ~H(~u)−∇ p̃−~g ·~x∇ρ. (A3)

Since A is a diagonal matrix, it is easily invertible and an equation for the velocity is obtained by
rearranging the terms:

~u = A−1~H(~u)− A−1∇ p̃− A−1~g ·~x∇ρ. (A4)

Interpolating this velocity onto the cell faces and inserting it into the discretized continuity
equation,

∂ρ

∂t
+∇ · (ρ~u) = ∂ρ

∂t
+ ∑

f

~S f · (ρ~u) f = 0, (A5)

yields a semi-discretized equation for the pressure:

∂ρ

∂t
+ ∑

f
(ρ(A−1~H(~u)− A−1∇ p̃− A−1~g ·~x∇ρ)) f = 0. (A6)

To avoid a checkerboard pressure and velocity field, the pressure and density terms are calculated
with a compact computational molecule:

∑
f
(−ρA−1∇ p̃) f · ~S f ≈∑

f
(−ρA−1) f (∇ p̃ f ) · ~S f , (A7)

∑
f
(−ρA−1~g ·~x∇ρ) f · ~S f ≈∑

f
(−ρA−1) f (~g ·~x) f (∇ρ) f · ~S f , (A8)

with

(∇θ) f · ~S f =
θN − θP

|~d|
S f , (A9)

where θ represents either the pressure or the density. Hence, the semi-discretized pressure equation
reads as follows:
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∑
f
(ρA)−1

f (∇ p̃) f · ~S f =
∂ρ

∂t
+ ∑

f

~S f ·
(

ρ f (A−1~H(~u)) f − (ρA−1) f (~g ·~x) f (∇ρ) f

)
. (A10)

By solving this equation, the pressure field is adjusted in a way that the mass fluxes at the cell
faces obey continuity. This is not equivalent to a divergence free velocity field at the cell centers.

Appendix A.2. PISO-Algorithm

The pressure equation derived above is fundamental for the PISO-Algorithm [29]. Hereafter, the
index m corresponds to either the old time step or the previous outer iteration and the index l to the
PISO-loop itself. The PISO-algorithm contains the following steps (at first iteration l = m):

1. Momentum predictor:

Cm~um,∗ =~rm −∇ p̃m − (~g ·~x∇ρ)m (A11)

2. Update the matrix coefficients:

(A−1)m = f (φm) (A12)

(H′)m = f (φm) (A13)

3. Solve the pressure equation:

∆((ρA−1)m
f p̃l+1) =

∂ρ

∂t

m
+∇ ·

(
ρm

f ((A−1)m~H(~ul)) f −
(
(ρA−1) f (~g ·~x) f (∇ρ) f

)m)
(A14)

~H(~ul)) =~rm − (H′)m~ul (A15)

4. Calculate the conservative mass fluxes:

φl+1
f = ρm

f ((A−1)m~H(~ul)) f · ~S f − ((ρA−1) f (~g ·~x) f (∇ρ) f )
m · ~S f − (ρA−1)m

f ∇ p̃(l+1). (A16)

5. Velocity corrector:

~ul+1 = (A−1)m~H(~ul)− (A−1)m∇ p̃(l+1) − (A−1~g ·~x∇ρ)m. (A17)

6. Go back to Step 3, if the residuum or the maximum number of iterations has not yet
been reached.

The velocity corrector does not involve the solution of a system of linear equations, because the
left and right side are evaluated at different iteration steps (operator splitting). This means that the
velocity is only corrected by the pressure term −(A−1)m∇ p̃(l+1). To take the influence of the velocity
term (A−1)m~H(~ul) into account, the PISO-loop has to be repeated twice [30]. The buoyancy term
(A−1~g ·~x∇ρ)m is updated through outer iterations. Moreover, the coefficients of H′ and A−1 are not
updated inside the correction loop, although they depend on the mass flux of the last time step ~φ.
This is done, because it is believed that the pressure–velocity coupling is more important then the
nonlinearity of the convection term [31]. However, the coefficients are of course updated within the
outer iterations.
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