Approximating Reachable Sets
by
Extrapolation Methods
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Abstract. Order of convergence results with respect to Hausdorff
distance are summarized for the numerical approximation of Au-
mann’s integral by an extrapolation method which is the set-valued
analogue of Romberg’s method. This method is applied to the dis-
crete approximation of reachable sets of linear differential inclusions.
For a broad class of linear control problems, it yields at least second
order of convergence, for problems with additional implicit smooth-
ness properties even higher order of convergence.
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§1. Introduction

Curves, surfaces, and higher dimensional manifolds, which are implicitly de-
fined as submanifolds of reachable sets of controlled dynamical systems, con-
stitute a challenging object of approximation methods. In this paper, our
main interest lies in extrapolation methods, especially in the visualization of
order of convergence results, for the discrete approximation of reachable sets
with respect to Hausdorff distance.

We concentrate on a special approach for the numerical approximation
of reachable sets of linear differential inclusions which is based on the compu-
tation of Aumann’s integral for set-valued mappings. It consists in exploiting
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ordinary quadrature formulae with nonnegative weights for the numerical ap-
proximation of the dual representation of Aumann’s integral via its support
functional. Theoretical roots of this approach could be traced back via [11]
to [5]. The paper [4] is the first one with explicit numerical computations,
exploiting mainly composite closed Newton-Cotes formulae for set-valued in-
tegrands, and including an outline of proof techniques for error estimates
with respect to Hausdorff distance, which avoid the embedding of families of
convex sets into abstract spaces (cp. [13,14]). All proofs are based on error es-
timates using weak assumptions on the regularity of single-valued integrands
(see [15,7,8,4]).

In Section 2 we sketch the error estimate for the discrete approximation
of Aumann’s integral for set-valued mappings by an adaptation of Romberg’s
method ([6]). Contrary to [4], we admit perturbations of the set-valued in-
tegrand and put emphasis on extrapolation methods from the very begin-
ning. Since every column of the extrapolation tableau has to be interpreted
by quadrature formulae with nonnegative weights, we restrict ourselves to
equidistant grids with Romberg’s sequence of stepsizes. As is familiar from
integration of single-valued functions, the starting column is given by compos-
ite trapezoidal rule, the first extrapolation step by composite Simpon’s rule for
set-valued mappings. The following columns of the extrapolation tableau can
be regarded as well as applications of quadrature formulae with nonnegative
weights on an equidistant grid. Thus, every extrapolation step defines an ap-
proximation of Aumann’s integral by a certain Minkowski sum of convex sets.
Exploiting this interpretation of the extrapolation procedure numerically in
a direct way or by the dual approach pursued in Sections 2 and 3 is a real
challenge for computational geometry, especially for higher dimensional prob-
lems. Naturally, the order of convergence with respect to Hausdorff distance
depends on the smoothness of the set-valued integrand in an appropriately
defined sense. For a broad class of integrands, exploiting results in [9,16], at
least order of convergence equal to 2 can be expected. For smooth integrands,
extrapolation based on Romberg’s integration scheme yields even higher order
approximations, as is demonstrated by several examples in Section 3.

Most important are adaptations of these extrapolation methods to linear
differential inclusions. As a result, in Section 3 we get higher order methods
for the discrete approximation of reachable sets of special smooth classes of
linear control problems. Contrary to [3] and [4], we present in Example 2 a
control region which is not even strictly convex and in Example 3 a control
region with lower dimension than state space dimension, both nevertheless ad-
mitting arbitrarily high order discrete approximations of the reachable sets by
extrapolation methods. For linear control systems, especially non-autonomous
ones, a fundamental solution of the according homogeneous system has to be
computed numerically. This can be done by Runge-Kutta methods of appro-
priate orders, cp. [4], or, as in Section 3, by extrapolation methods using the
hybrid method announced in [3].

In the final Section 4, we outline some open questions and possible direc-
tions of future research.
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§2. Set-Valued Integration

According to [2], we use the following definition of an integral of a set-valued
mapping.

Definition. Let I = [a,b] with a < b be a compact interval, and F' : [ — RR"
a set-valued mapping of I into the set of all subsets of R". Then the set

/F(T)dT = {z € R" : there exists an integrable selection
Ji

f(-)of F(-)on I with z = /j.f(T)dT}

is called Aumann’s integral of F(-) over I.

Our objective is to approximate Aumann’s integral numerically by ex-
trapolatory quadrature formulae which are motivated by classical Romberg
quadrature. Choose Romberg’s sequence of stepsizes

ho = b — a, hi =27 hg (i=1,...,1)
corresponding to the sequence of grids
a:ti,0<ti71<...<ti’2i:b, tij=a+7h; (ljZU,...,Zi)

and compute as first column of the extrapolation tableau the corresponding
weighted Minkowski sums of sets

201

Tio(F) = h; %(‘0 )+ Z o (F(ti;)) + —co(F(b)) : (1)

Here ©6(-) denotes the closed convex hull operation. This is just the set-
valued analogue of composite trapezoidal rule. In fact, up to now, due to the
computational complexity of this rule, the calculation in (1) is done for the
dual representation of Tj(F') by means of its support functional

(1L, Tiw(F))= sup (I|2)

2€M050(F)
2t
= h; —5*(1 F(a))+ > 6" (L F(ti;) + 5*(1 F(b))
7=1

for all I € R"™, where (-]-) denotes the usual inner product in R"™ with induced
Euclidean norm || - ||2.

Because of the fact that for an integrably bounded measurable set-valued
mapping F(-) with nonempty and closed values Aumann’s integral is convex
and compact (cf. [1]) the following equality holds

6" (L/;F(T)dT) /6*(1 F(r))dr =6 (1,Tio(F)) 4+ Rio(l, F)
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with a remainder term R;o(l, F') depending on ! € R™ and F(-). Motivated
by classical Romberg integration, this relation suggests the following dual
extrapolation scheme

k ok ) _Sx . &l
o (1. T(ry = ST = G B) )

fori=1,...,r, k=1,...,s, k <iwithsome s < r. It is well-known (see [12])
that the right-hand side of (2) can be written also as a quadrature formula
with nonnegative weights for the integrand §*(1, F'(+)), e.g., for k = 1 one gets
the set-valued analogue of composite Simpson’s rule. Therefore, the left-hand
side 6* (I, T;x(F)) is in fact a value of a support functional of a well-defined
closed convex set T;(F).

Moreover, due to the well-known relation between Hausdorfl distance
haus(-, -) with respect to Euclidean norm and support functionals, cp. e.g.,
[13], the representation holds

haus ( /2 F(r)dr, T,;k(F)> = sup |6 (z, /I F(T)dr) — 6 (L, T(F)) | (3)

llel>=1

Hence, exploiting error estimates for classical Romberg integration under weak
regularity assumptions and admitting, contrary to [4], perturbations of F
of suitable order with respect to Hausdorff distance, we get the following
fundamental order of convergence result.

Theorem. Let F : I = R" be a measurable and integrably bounded set-
valued mapping with nonempty compact values. Assume that the support
function 6*(1, F(-)) has an absolutely continuous (2s)-th derivative and that
its (2s + 1)-st derivative is of bounded variation with respect to t uniformly
for all | € R" with ||l = 1. Moreover, assume that F : I = R" is
a perturbation of F with nonempty compact convex values such that the
Hausdorff distance

haus(co(F(t)), F(t)) < ¢ - h2t?

with a constant ¢y which is independent of h,.
Then the estimate

haus </ F(r)dr, Tm(ﬁ')> < g - B2ET?
I

holds with a constant ¢y which is independent of h,.
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§3. Approximation of Reachable Sets

Most important is the application of quadrature formulae for set-valued in-
tegrals to the approximation of reachable sets R(b, a, Yy ) for linear differential
inclusions consisting of all possible endpoints of absolutely continuous func-
tions y(-) on I which satisfy

y'(t) € A(t)y(t) + B(tH)U (for almost every t € I := [a,b])

y(a) € Yy. / (4)

Here, A(+) is an integrable n x n-matrix function, B(-) an integrable n x m-
matrix function, U C R™ is a compact, nonempty control region and Y, C R"
a compact, convex, nonempty initial set.

Denoting with ¢(t, ) the fundamental solution of the corresponding ho-
mogeneous differential equation with ¢(7,7) = E,, the reachable set of (4)
could be equivalently expressed by a set-valued integral, namely

b
Ribya.Yo) = (bt + [ o(br)B(rUar.

Applying the extrapolation method of Section 2 and replacing all values
&(b,ty ;) in Tre(@(b,-)B(-)U) with approximations ¢,s(b,tr ;) computed with
an error of order O(h%2*T?) (e.g., with an extrapolation of the midpoint rule
for sufficiently smooth A(-)), we could compute the set

Gra(b, @)Y + Tra ra(b. ) B()U)

which approximates the reachable set with order O(h%*t?) on appropriate
smoothness assumptions, cp. Section 2.

To demonstrate the convergence properties of the extrapolation method
for various types of control regions U, we consider the following three ex-
awmples. In all tables, the Hausdorfl' distance in (3) is approximated in the
following way: the exact integral is replaced by a very precisely computed
reference set and the supremum in (3) is restricted to a discretization of the
boundary of the unit ball.

Example 1. We regard the following time-dependent linear differential in-
clusion on I = [1,2] with

an=(_3, 5). so=(% L) =)

and U = By(0) C R* as the closed Euclidean unit ball, especially, U is a
strictly convex control region.

This example possesses typical properties which allow higher order of conver-
gence: the matrix function B(-) is invertible on I and A(+), B(+) are sufficiently
often differentiable, so that the support function

5(1, 62, B(1)) = || B (2.4 1]
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Figure 1. Approximations Ty, T1¢, 711 resp. 122 for Example 1

is also sufficiently often differentiable with bounded derivatives uniformly for
all I € R* with ||l|; = 1. Figure 1 shows the first three approximations
together with T35 which coincides with the reachable set within plotting ac-
curacy.

The corresponding convergence tables with an estimated Hausdorft distance
between the approximations and the reachable set together with an estimated
order of convergence are shown in Tables 1 and 2.

T,s | approximation error | order

Tho | 1.4565749402558685
T | 0.3420734035031976 | 2.0902 | |1y, |0.1107201069639423 | ———
Ty | 0.0856358565527171 | 1.9980 | |T% | 0.0087819059343079 | 3.6562
T30 | 0.0214188467870042 | 1.9993 | |13 | 0.0005074987990517 | 4.1131
Tup | 0.0053554930687882 | 1.9998 | | T4y | 0.0000293793678088 | 4.1105
T50 | 0.0013389211774539 | 1.9999 | |Ts; | 0.0000017870583280 | 4.0391
To | 0.0003347332747903 | 2.0000 | | Ts; | 0.0000001111448684 | 4.0071

T,s | approximation error | order

Table 1: Errors of T} and T} for Example 1

T,s | approximation error | order

T35 | 0.0096375283496939 | ——
T35 1 0.0003822727111560 | 4.6560 | | T33 | 0.0004745738258154 | ———
Ty2 | 0.0000060351547466 | 5.9851 T45 1 0.0000100916525794 | 5.5554
T55 | 0.0000000724816180 | 6.3796 | | T53 | 0.0000000644178035 | 7.2915
Ts2 | 0.0000000010038779 | 6.1740 | | T3 | 0.0000000001809770 | 8.4755

T.s | approximation error | order

Table 2: Errors of Tys and T}3 for Example 1
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Example 2. Consider the linear differential inclusion on I = [0,1] with

A(t):(i _;) B(t):(Sl_Qtt (1f2t)et>’ YF{(S)}

and U = [~1,1]? € IR? as the unit ball with respect to the maximum norm,
especially, U is a control set which has corners and is not strictly convex.

Nevertheless, all assumptions of the convergence theorem are fulfilled, since
§*(1,¢(1,7)B(T)U) = e~ =7 (|1 + €7 |ly + b))

is arbitrarily often differentiable with bounded derivatives uniformly for all
l € R? with ||/||s = 1. Figure 2 shows the first three approximations together
with T35 which again coincides with the exact reachable set within plotting

precision.
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Figure 2. Approximations Tyg, Tho, T11 resp. Tay for Example 2

Convergence tables for this example can be found in Tables 3 and 4.

T.s | approximation error | order

Tho | 1.1377005895412307
Ty | 0.1511442148720676 | 2.9121 Ty, 10.0078719847420130
T5 | 0.0362760384531468 | 2.0588 | | T3 | 0.0005332856739972 | 3.8837
T30 | 0.0092155851665754 | 1.9769 | | T3, | 0.0000340540243489 | 3.9690
Tyo | 0.0023132235480369 | 1.9942 | | Ty, | 0.0000021400309889 | 3.9921
Tsp | 0.0005788914860450 | 1.9985 | | T51 | 0.0000001339354307 | 3.9980

T.s | approximation error | order

Table 3: Errors of T} and T} for Example 2

T,, | approximation error | order

T35 | 0.0000486148810883
T35 1 0.0000008339770790 | 5.8652 | | 133 |0.0000000755683551
T42 | 0.0000000133505798 | 5.9650 | | Ty3 | 0.0000000003248339 | 7.8619
T55 | 0.0000000002098739 | 5.9912 | |T53 | 0.0000000000012932 | 7.9726

T,s | approximation error | order

Table 4: Errors of T, and T3 for Example 2
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Example 3. Modifying Example 2 only slightly, we choose

+ t
B(t) = <
(=1 4+ 2t)et
and U = [-1,1] C R as a control region with a lower dimension than state

space dimension.

Nevertheless, the support function
6°(1, (1, ) B(r)U) = =720l + 1o

fulfills all assumptions of the convergence theorem. Due to unavoidable errors
in the computation of the fundamental system, the reachable set is approx-
imated by solid polygons which converge quickly to the straight line shown in

Figure 3.
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Figure 3. Approximations Ty, Th0, 11 resp. Too for Example 3

One observes the expected order of convergence in Tables 5 and 6.

T,s | approximation error | order

Tho | 0.4713014578701207 | ——
T | 0.0668209378745849 | 2.8183 | |11 | 0.0047332585545146 | ——
Ty | 0.0197452231727039 | 1.7588 | | T4 | 0.0003239110494004 | 3.8692
T30 | 0.0051496006755192 | 1.9390 | | T34 | 0.0000207428109016 | 3.9649
Ty | 0.0013012561272192 | 1.9846 | | Ty, | 0.0000013044760001 | 3.9911
T5p | 0.0003261847432624 | 1.9961 T5; | 0.0000000816565897 | 3.9978

T,s | approximation error | order

Table 5: Errors of T, and T} for Example 3

T,, | approximation error | order

T35 | 0.0000481425650156
T35 1 0.0000008264432341 | 5.8643 | | 133 | 0.0000000754808080 | ——
T42 | 0.0000000132322462 | 5.9648 | | Ty3 | 0.0000000003244811 | 7.8618
T52 | 0.0000000002080203 | 5.9912 | | T53 | 0.0000000000012885 | 7.9763

T,s | approximation error | order

Table 6: Errors of Ty9 and T3 for Example 3
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§4. Concluding Remarks

We tried to point out the intrinsic relation between set-valued numerical in-
tegration by extrapolation methods and higher order discrete approximations
of reachable sets for linear control problems. In principle, each discrete ap-
proximation is a weighted Minkowski sum of closed convex sets. Especially
for higher state space dimension, the direct computation of these sums or of
their dual representation by support functionals is a real challenge. Admitting
errors up to a certain order in the different terms of the Minkowski sum resp.
in the set-valued integrand could ease this task.

For a remarkably broad class of linear control problems one gets at least
second order of convergence. We have shown by several examples that higher
order of convergence can be achieved if the underlying problem has additional
smoothness properties, even if the control region is not strictly convex or if
the dimension of the control region is smaller than state space dimension. A
characterization of broader classes of such problems with additional implicit
smoothness properties would be very desirable.

For nonlinear problems, reachable sets are not any longer necessarily
convex and an integral representation by Aumann’s integral is not available.
Nevertheless, first order of convergence can be achieved by Euler’s method
(see [10]), and second order of convergence by modified Euler method for
special problem classes ([17]). The development of higher order methods is
an interesting and challenging field of ongoing research.
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