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Abstract
Fine roots play a crucial role in many ecological and biogeochemical processes in temperate forests. Generally, fine root 
biomass is expected to increase during the growing season, when water and nutrient demands are high, but information on 
seasonal variability is still scarce. Here, seasonal differences in root length of European beech (Fagus sylvatica L.) were 
analysed at eight sites within its north-eastern distribution range. Fine roots of mature trees were monitored using minirhi-
zotrons. Scans were taken for three different depths at the beginning of winter, the end of winter and over the summer for 
two consecutive years, and analysed automatically by an AI-algorithm (RootDetector). An additional experiment was carried 
out to show that the RootDetector was unaffected by changes in soil moisture. Root-length density was 40% higher at the 
beginning of winter and 51% higher at the end of winter than in summer. Our results indicate a net root loss during adverse 
conditions in early summer, but no trend towards deeper root growth over these drier periods. Interestingly, the root loss was 
compensated afterwards during more favourable conditions in autumn. We could show that fine root length in temperate 
forests is seasonally more variable and, so far, less predictable than previously assumed. A profound understanding of this 
seasonal variability is important for modelling terrestrial biogeochemical processes and global carbon fluxes.
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Introduction

Belowground biomass in forest ecosystems plays a funda-
mental role in the global carbon cycle (Jackson et al. 1997). 
Roots account for more than 20% of total forest biomass (Ma 
et al. 2021), and their contribution to net primary production 
is even higher (Jackson et al. 1997), because of high turnover 

rates of fine roots (< 2 mm in diameter). In terrestrial eco-
systems, fine roots are responsible for acquiring essential 
soil resources (McCormack et al. 2015). In spite of their 
high relevance for ecological and biogeochemical processes, 
information on the temporal dynamics of fine roots is still 
scarce compared to the aboveground plant organs.

In contrast to shoots, roots do not experience winter 
dormancy (Fernandez and Caldwell 1975; Malyshev et al. 
2023). Belowground growth of temperate broadleaved trees 
is possible throughout the entire year in temperate broad-
leaved trees (Resa 1877), but growth of European beech 
(Fagus sylvatica L.) usually ceases if soil temperatures fall 
below 2.5 °C (Schenker et al. 2014). Above- and below-
ground phenology are thus not necessarily in-sync with each 
other (Blume-Werry et al. 2016; Radville et al. 2016; Maly-
shev et al. 2023). If root production happens during winter 
or very early in the growing season (e.g. Gaul et al. 2008), 
growth can be fuelled by carbohydrates that are stored in 
woody tissues in autumn (Najar et al. 2014). Fine root pro-
duction is usually reduced during winter (Alvares‐Uria and 
Körner 2007; McCormack et al. 2014; Schenker et al. 2014) 
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and increases during April in European beech, shortly before 
the growing season starts (Mainiero et al. 2010). Peaks 
appear at the time of bud burst in spring and in early sum-
mer (Mainiero et al. 2010; Montagnoli et al. 2014). This tim-
ing is assumed to balance between carbohydrate availability 
from photosynthesis and periods of optimal temperatures, 
water and nutrient supply (Radville et al. 2016). Once estab-
lished, lifespan of fine roots is highly variable and depends 
on endogenous factors, but also on external abiotic factors, 
time of the year and tree constitution (Leuschner 2020). Fine 
root longevity estimates for European beech range from less 
than 77 days (Mainiero et al. 2010) to 412 days (Mariën 
et al. 2021) and even to more than 1000 days under optimal 
conditions (Meier and Leuschner 2008b). Pregitzer et al. 
(2000) and Mainiero et al. (2010) found a decrease in aver-
age root longevity and an increase in root mortality during 
the growing season, likely due to higher respiration rates 
and increased microbial activity at higher soil temperatures. 
Generally, fine root mortality in temperate forests seems to 
be more evenly distributed throughout the year than fine 
root growth.

The development of European beech total fine root bio-
mass and length is a complex result of strong environmental 
influences on root production and root mortality, with higher 
root turnover in more stressful environments and little dif-
ference between populations (Meier and Leuschner 2008b; 
Hertel et al. 2013). Beech total root biomass increased along 
a precipitation gradient in western Germany towards sites 
with less annual precipitation (Hertel et al. 2013). In a for-
est within the species’ southern distribution range, total 
fine root length and standing biomass determined by soil 
cores peaked in mid-July with a second increase in Sep-
tember (Montagnoli et al. 2014). Length and mass of very 
fine roots (d < 0.5 mm) was doubled from May to July and 
followed a second-order polynomial relationship for soil 
moisture (optimum around 50 vol.%) and soil temperature 
(optimum 14 °C). Fine root biomass and length also peaked 
in a Quercus forest in July and a second but lower peak was 
observed in October, whilst values during the winter period 
were lowest (Montagnoli et al. 2019).

One of the most common methods used for belowground 
studies is the minirhizotron method (Johnson et al. 2001). In 
contrast to soil cores and ingrowth cores, it provides a non-
destructive option for long-term monitoring of root dynam-
ics (Freschet et al. 2021). As a ground-breaking innovation 
in recent years, there are now ways to analyse root images of 
minirhizotrons much faster and more reliably using artificial 
intelligence with the aim to overcome the logistic limita-
tion of small sample sizes in root research and provide more 
robust and generalisable results (e.g. Peters et al. 2023). 
However, the validity of these algorithms is still an ongoing 
topic and the capabilities and accuracies are continuously 
being improved. One of the remaining questions is whether 

the root detection probability is affected if the visual con-
trast between roots and soil is modified by changes in soil 
moisture.

To advance such novel techniques of root research and to 
investigate root dynamics in Central Europe’s most impor-
tant forest ecosystem type, we analysed seasonal patterns in 
root length density of European beech at its north-eastern 
distribution range using minirhizotrons. Root scans were 
taken from 2021 to 2023 at the beginning of winter, end of 
winter and in summer at eight sites along a large climatic 
gradient (∆ mean winter temperature = 4.0 K) between Ros-
tock in Germany and Gdansk in Poland. Root-length den-
sity was defined as the root length per scanned area of the 
minirhizotron tube surface and determined with the RootDe-
tector (Peters et al. 2023). We hypothesised that (1) the root-
length density follows a clear seasonal pattern with higher 
root-length density in the summer compared to the begin-
ning and end of winter. To confirm the validity of our results, 
we also performed an experiment that tested whether the 
root detection probability differed with soil moisture, as this 
was considered to be the most important factor potentially 
complicating comparison between seasons. We expected that 
(2) roots are better detectable in wet soils than in dry due to 
better soil-tube contact and higher visual contrast between 
the darker soil and mostly bright roots in wetter soil.

Material and methods

Field sites and tree selection

Root length was monitored at eight forest sites dominated by 
mature European beech located in the Pleistocene lowlands 
of Northeast Germany and Northwest Poland (Weigel et al. 
2021). These sites were distributed along a climatic gradi-
ent of 500 km with decreasing winter temperatures from 
west to east (Fig. 1), covering stands from the central to the 
north‐eastern distribution margin of European beech (Bolte 
et al. 2007). The study sites were covered by monospecific 
beech stands with their typically very sparse and species-
poor understory mainly consisting of small-statured spring 
geophytes and a limited number of small beech seedlings 
(Weigel et al. 2019), which are almost absent in terms of 
aboveground biomass at our sampling dates. Therefore, 
we assume that the roots observed in this study originate 
predominantly from mature beech trees. Selection of the 
sites focussed on choosing stands with similar pedological 
and hydrological conditions. The soil type at all sites was 
sandy Cambisol with similar soil texture, mostly sandy silt 
to silty sand (Weigel et al. 2021). The climate at the warmest 
sites (BH, HH) is characterised by relatively mild winters 
with long-term means of coldest month mean air tempera-
tures around 0 °C, whilst the eastern sites are below -3 °C 
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(Haylock et al. 2008). Long-term mean annual precipitation 
ranged from 520 to 650 mm (ESM3). The study winters were 
warmer than usual, mean coldest month temperatures ranged 
from  – 1.3 °C to 1.8 °C in winter 2021/22 and from -0.6 °C 
to 1.0 °C in winter 2022/23 (for further details and average 
winter temperatures see ESM4). Also, the early growing 
season between April and June was drier than the long-term 
means in both study years (precipitation Apr – Jun long-
term: 138–158 mm, Apr–Jun 2022: 78–120 mm, Apr–Jun 
2023: 59–129 mm), whilst the annual precipitation sums 
were only slightly lower than usual at most sites (ESM3). A 
dendrochronological pre-study was carried out to identify 
three mature beech trees that best represented the growing 
conditions at each site (Weigel et al. 2018) and one of these 
was randomly chosen for the root-length monitoring (three-
fold replication only at the coldest site KA). Tree diameters 
ranged from 36 to 49 cm, heights from 29 to 40 m and age 
from 82 to 181 years, when the study sites were established 
(Weigel et al. 2018). The gradient design as well as different 
tree ages across sites allow for general results representing a 
broad range of beech forest ecosystems at the species’ north-
eastern distribution range.

The target trees were fenced to exclude large mammals 
and six minirhizotron tubes were installed, evenly distrib-
uted around each tree at a distance of 2 to 3 m from the 
trunk in 2016 (NZ site had only three tubes because of rocky 
underground). Half of the tubes reached 30 cm below the 
soil surface and half down to 45 cm below the soil surface. 
About 70% of fine roots occur in the upper 30 cm and fine 
root density decreases exponentially with soil depth (Meier 
et al. 2018). We therefore assume that the vast majority 

of fine roots was captured by our dataset. Minirhizotrons 
(outside diameter 70 mm) were installed at an angle of 45° 
tilted away from the sample tree, capped and taped above-
ground to prevent light entry. Scans of 216 × 196 mm were 
taken by CID-600 root scanners (CID Bio-science Inc., 
Camas, USA) at a resolution of 300 dpi, repeated at two or 
three non-overlapping depth levels, depending on the total 
length of the minirhizotrons. Root scans were taken between 
November 2021 and July 2023 with one measurement at 
the beginning of the winter (beginning of November) and 
one measurement at the end of the winter (end of March/
beginning of April) as well as one measurement during the 
subsequent summer (end of June/ beginning of July), respec-
tively, adding up to six measurement dates covering 2 full 
years. The sampling point in March/ April was chosen to 
sample the state after winter and before the growing season. 
Leaf-out of beech usually starts in April (Kolář et al. 2016; 
Malyshev et al. 2022). July, centred in the growing season 
was chosen to represent the state right after the peak of tree 
growth (Strieder and Vospernik 2021; Debel et al. 2024). 
We expected highest root-length density at this measure-
ment point. November was chosen as sampling point at the 
end of the growing season, shortly after the leaf shedding 
of beech in late October (Schieber et al. 2013), and prior to 
the onset of winter. Due to reduced demand of water and 
nutrient uptake towards the end of the aboveground growing 
season and still warm soils, which may promote root decom-
position, we expected a net loss of roots at this point in time 
compared to summer. Taken together, the net change on 
root-length density between March and July covers the peak 
of the aboveground growing season, the change between July 

Fig. 1  Map of beech forest 
monitoring sites in Northeast 
Germany and Northwest Poland



 Oecologia (2025) 207:3131 Page 4 of 9

and November should cover the presumed decline from peak 
season to start of winter, and the change between Novem-
ber and March covers winter, i.e. the aboveground dormant 
season.

Quantification of root‑length density 
with the RootDetector

Root length per scan was determined with the RootDetector, 
a convolutional neural network (CNN) specifically designed 
for the automatic detection and segmentation of plant roots 
in minirhizotron images, as outlined by Peters et al. (2023). 
Utilising a U-Net architecture, RootDetector demonstrates 
high reliability in identifying root structures within highly 
heterogeneous substrates, achieving an F1 score of 0.51 
over the 24 validation pictures annotated manually for the 
given dataset. The F1 score, ranging from 0 to 1, represents 
the harmonic mean between precision and recall and is a 
commonly used metric to assess performance of machine 
learning models. Furthermore, Peters et al. (2023) have 
shown that RootDetector enables precise total root-length 
estimations  (r2 = 0.99 when compared to human experts) by 
employing a secondary skeletonization algorithm and cal-
culating root length using the formula proposed by Kimura 
et al. (1999). Here, Kimura root length per scan expressed 
as mm  cm−2 was used as root-length density.

Soil moisture experiment

To determine whether the automated root detection is 
affected by soil moisture, an experiment was conducted at 
the Hanshagen (HH) forest site at the beginning of Septem-
ber 2023. Three target trees with six minirhizotrons each 
were used for the soil moisture experiment and the upper 
15 cm of the soil were used for the analyses. First, root scans 
were taken from all tubes during a dry period at the end of 
summer and simultaneously the volumetric soil moisture in 
the upper soil was measured by a Fieldscout TDR 300 Soil 
moisture meter (Spectrum Technologies, Aurora, USA). 
Afterwards, the six tubes per tree were randomly assigned to 
three treatments. The first treatment received 40 L of water 
on an area of 1  m2 around the tube in several doses over 
2 h, the second treatment received 80 L and the third group 
was treated as a reference and was not watered at all. After 
a waiting period of three hours, which ensured that the soil 
was evenly moistened but short enough to avoid artefacts 
caused by freshly growing roots (Guilloy et al. 2011), root 
scans and soil moisture measurements were repeated.

Statistical analyses

All statistical analyses were performed using the Software 
R 4.4.0. (R Core Team 2024) and additional packages listed 

in the Online Resource (ESM5). To test for differences in 
root-length density between seasons, ANOVAs were applied 
for linear mixed-effect models. Mixed model formulation 
included the season and depth and their interaction as fixed 
effects and tube nested in site as well as the study year (first 
study year includes start of winter 2021, end of winter 
2022, summer 2022 and the second study year the same for 
2022/23) as random effects, thereby accounting for the spa-
tial and temporal dependencies in the data: root-length den-
sity ~ season * depth + (1|site/tube) + (1|study year). Paramet-
ric assumptions of the linear models (homoscedasticity and 
normal distribution of residuals) were checked visually by 
diagnostic plots and improved by square root transformation.

For the moisture experiment, the data were also analysed 
by ANOVAs of linear mixed effects models. To explore the 
effect of the water treatment on soil moisture, water treat-
ment (0 L/ 40 L/ 80 L) and session (before vs. after water-
ing) and their interaction were included as fixed effects and 
tubeID was used as random effect: Soil moisture ~ water 
treatment * session + (1|tubeID). The same model with root-
length density instead of soil moisture as dependent variable 
was used to search for potential differences in the effect of 
the water treatments on root-length density. Since actual 
root-length density is not expected to change much within a 
few hours, this would indicate differences in root detection 
probability. For visualisation, the ratio between values after 
watering and before watering was calculated, so that values 
deviating from 1 indicate differences between the sessions.

Results

Root‑length seasonality

Root-length density was significantly higher at the begin-
ning of winter (2.54 ± 1.77  mm   cm−2) and the end of 
winter (2.73 ± 1.78  mm   cm−2) compared to summer 
(1.81 ± 1.39 mm  cm−2; Fig. 2; p < 0.001). In relative num-
bers, root-length density was 40% higher at the beginning 
and 51% higher at the end of winter than over the summer. 
The general pattern was consistent amongst study sites 
(ESM2) and amongst years with a particularly low root-
length density for summer 2023 (ESM1). Mean values 
at the end of winter did not differ from the beginning of 
winter (p = 0.105). The differences between seasons were 
not affected by rooting depths (interaction season:depth 
p = 0.660), thereby implying no sign of deeper rooting in 
(dry) summers.

Moisture experiment

The water treatment significantly increased soil mois-
ture (water treatment:session p < 0.001), but did not affect 
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root-length density detection (water treatment:session 
p = 0.230; Fig. 3).

Discussion

Seasonal pattern of root length

We found a significantly higher root-length density at the 
beginning (+ 40%) and end (+ 51%) of winter compared to 
summer (Fig. 2). This contradicts previous findings, which 
documented highest fine root length for summer (Montag-
noli et al. 2014, 2019). Root decay apparently exceeded 
production rates during the early growing season, leading 
to a net loss of roots. One explanation for high decay rates 

in spring and early summer could be that roots have already 
died off in winter. Roots of temperate tree species are sus-
ceptible to frost events below  – 5 to  – 10 °C (Noshiro and 
Sakai 1979). Litterbag experiments which we conducted 
during the same period as the root monitoring showed 
that decomposition rates were almost 40% lower during 
winter compared to early summer, so that dead roots may 
have remained in the soil until spring. However, high win-
ter root mortality is not very likely, because almost no soil 
frost appeared during the study winters (absolute minimum 
soil temperature:  – 0.4 °C). Another possible factor might 
be that precipitation was lower than usual during the early 
growing season. Precipitation sums between April and June 
averaged over all sites were 35% lower in 2022 than the 
long-term means (36% in 2023, ESM3). Temperate trees 
react to summer drought either by increased root loss to save 
carbon or by increased growth to maximise water-absorbing 
surface area (Leuschner et al. 2001; Meier and Leuschner 
2008a). For European beech, an increase in fine root biomass 
has been shown under mild water stress, but under severe 
drought, growth is usually supressed (Leuschner 2020). 
At the same time, root mortality increases during extreme 
drought and increased temperatures, leading to a reduction 
in living fine root biomass (Pregitzer et al. 2000). Within the 
analysed upper 45 cm covered by three root images (= 15 cm 
depth per picture), we did not detect any trend towards more 
root growth in deeper and presumably wetter soil horizons 
during the driest period of the year. Whilest several herba-
ceous plants have been shown to root deeper under drier 
conditions (Reader et al. 1993), this seems not necessar-
ily be the case for European beech (Meier and Leuschner 
2008b; Meier et al. 2018). However, a shift of beech roots 
from the organic layer towards the upper mineral soil has 
been documented with decreasing precipitation (Meier and 
Leuschner 2008a). This effect is potentially also present at 
our sites within the upper part of the soil (upper picture), but 
would then only be visible with a finer depth resolution. It 
is also possible that roots grew below the observed depth of 
45 cm. The amount of total biomass or length in deeper soil 

Fig. 2  Root-length density in mm per  cm2 of minirhizotron scans in 
different seasons from autumn 2021 to summer 2023 across eight for-
est sites between Rostock and Gdansk, quantified by the AI RootDe-
tector. Shown are mean values and standard errors over 272 minirhi-
zotron scans per bar. The letters displayed in the bars result from the 
mixed model ANOVA with subsequent pairwise comparison of esti-
mated marginal means

Fig. 3  Effect of the water 
treatment on the volumetric 
soil moisture (left) and on the 
root-length density determined 
by the AI RootDetector (right). 
Moisture and root-length den-
sity ratios were calculated by 
dividing the values after water-
ing by the values before water-
ing (= ambient conditions). Bars 
show means and standard errors 
of six tubes per treatment in the 
upper 15 cm of the soil
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layers is expected to be low (Meier and Leuschner 2008a; 
Meier et al. 2018), but few highly active deep-reaching roots 
specialised into water uptake may have a major importance 
for the trees water supply.

During autumn, fine root growth usually decreases (Rad-
ville et al. 2016). However, growth flushes can still occur 
if environmental conditions allow it, as originally proven 
for various broadleaved tree species including European 
beech by Resa (1877). A second peak during autumn can 
happen even though these are usually lower than early sum-
mer growth peaks (Mainiero et al. 2010). Withington et al. 
(2020) found high variability of temperate tree species in 
the timing of root production peaks across years, with lat-
est peaks in October, suggesting a strong influence of envi-
ronmental conditions. In our study, autumn was relatively 
warm, mean temperatures of October 2021 were 3 °C above 
long-term means (Haylock et  al. 2008). High tempera-
tures in combination with increased soil moisture during 
autumn may have promoted root growth, thereby explaining 
increased root-length density in our dataset during the start 
of the winter. For seedlings of European broadleaved tree 
species, root growth decreases rapidly at temperatures below 
7 °C (Schenker et al. 2014), but growth of European beech 
fine roots stops only when temperatures fall below 2.5 °C 
(Schenker et al. 2014). Even though root-length density did 
not change significantly between start and end of the winter, 
it is possible that root growth continued during winter. If 
so, however, winter growth rates remained in balance with 
decay rates.

Ecological implications

During winter, nutrient and water uptake is negligible. Trees 
will therefore benefit from high fine root length mainly dur-
ing the growing season. On the one hand, high root-length 
density during late winter can be interpreted as a smart 
strategy aiming to maximise root length when the season of 
highest demand starts. However, if these roots are already 
produced during the previous autumn, there is a certain risk 
of significant damage if the newly formed fine roots in the 
upper soil layers are exposed to severe soil frost. Single soil 
frost events are expected to increase in frequency because 
of reduced presence of insulting snow cover as a result of 
climate change (Groffman et al. 2001). Still, we detected 
hardly any potentially harmful soil frost events at the eight 
sites over the two observed winters and previous studies at 
the same sites (Weigel et al. 2021).

The low fine root length during summer without a trend 
towards deeper rooting could be an alarming sign if it was 
indeed a consequence of stressful conditions caused by water 
deficit. Due to climate warming, summer drought in temper-
ate ecosystems is expected to become more frequent and 
severe in the future (IPCC 2021). However, the trees seem to 

be able to compensate for early season root loss during more 
favourable times of the year, e. g. warm and moist periods 
in late autumn.

Xylogenesis dynamics commonly show the end of radial 
growth during early August, whilst leaf senescence does 
not start before October in European beech (Michelot et al. 
2012; Puchałka et al. 2024). So far, we assumed that the 
primary production during that time goes into non-struc-
tural carbohydrates (NSC) to enable leaf sprouting and early 
growth during the next spring. Our study suggests that the 
carbohydrates that are produced when radial tree growth 
has already stopped are potentially also invested into root 
growth.

Methodological considerations

We used a recently developed root detection model to deter-
mine root-length density of European beech in a large data-
set of more than 800 root images. Since the surprising results 
of our data raised the question whether this was an artefact 
of potentially higher root detection probability in response to 
higher soil moisture, we conducted an additional experiment 
to quantify this possibility. We could show that root detec-
tion probability of the RootDetector was not influenced by 
soil moisture. This confirms not only the general quality of 
the RootDetector, but also the validity of our results.

The big benefit of the automized RootDetector is the 
possibility to analyse large datasets with relatively little 
effort. However, the RootDetector provides only absolute 
root-length density values and does not allow for a differ-
entiation between newly grown roots and root decay so far. 
Furthermore, we cannot be sure that the root-length pattern 
would be observed for root biomass as well, as specific root 
length may also differ between seasons. For further inter-
pretation of the data, it would be highly beneficial to back 
up the results with destructive methods such as soil cores 
or ingrowth-cores, as this would allow for differentiation 
between alive and dead but not yet decomposed roots (e.g. 
by TTC staining; Comas et al. 2000), which is not accounted 
for with the minirhizotron method.

Considering the little effort required for image analysis 
with the RootDetector, further research should increase the 
frequency of measurements. A higher temporal resolution 
would allow for deeper interpretation of the root-length pat-
tern. Previous studies show that time intervals of two to four 
weeks would be ideal (Mainiero et al. 2010; Withington et al. 
2020). However, this might be accompanied by a decrease in 
the number of monitoring sites due to practical constraints. 
A main insight from our study is that we observed the same 
temporal pattern between climatically quite different moni-
toring sites all across the north-eastern distribution range 
of European beech. This study may therefore indicate that 
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it is possible to draw generalizable conclusions even from 
single or few sites.

Conclusion

Root-length density of European beech was higher at the 
start (+ 40%) and the end (+ 51%) of winter than in mid-
summer during 2 consecutive years at eight sites across the 
species’ north-eastern distribution range. This finding proves 
the high intra-annual variability in root length of European 
beech. A reduction of root-length density during adverse 
conditions seems to be compensated afterwards during more 
favourable periods of the year. The lack of a trend towards 
deeper root growth over the dry periods, however, might be a 
worrying signal. A profound understanding of the seasonal-
ity of fine root dynamics is crucial for modelling terrestrial 
biogeochemical processes and global carbon fluxes. Our 
study indicates that they are more variable and, so far, less 
predictable than previously assumed.
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